Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(1): 100694, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097181

RESUMO

Multiplex proteomics using isobaric labeling tags has emerged as a powerful tool for the simultaneous relative quantification of peptides and proteins across multiple experimental conditions. However, the quantitative accuracy of the approach is largely compromised by ion interference, a phenomenon that causes fold changes to appear compressed. The degree of compression is generally unknown, and the contributing factors are poorly understood. In this study, we thoroughly characterized ion interference at the MS2 level using a defined two-proteome experimental system with known ground-truth. We discovered remarkably poor agreement between the apparent precursor purity in the isolation window and the actual level of observed reporter ion interference in MS2 scans-a discrepancy that we found resolved by considering cofragmentation of peptide ions hidden within the spectral "noise" of the MS1 isolation window. To address this issue, we developed a regression modeling strategy to accurately predict reporter ion interference in any dataset. Finally, we demonstrate the utility of our procedure for improved fold change estimation and unbiased PTM site-to-protein normalization. All computational tools and code required to apply this method to any MS2 TMT dataset are documented and freely available.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Íons
2.
Artigo em Inglês | MEDLINE | ID: mdl-38087181

RESUMO

The blood-brain barrier (BBB) poses a major obstacle in the treatment of all types of central nervous system (CNS) diseases. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach by downregulating disease-related genes via RNA interference. However, the BBB is a formidable barrier for macromolecules such as nucleic acids. In an effort to develop a brain-targeted strategy for siRNA delivery systems formed by electrostatic interactions with cationic polymers (polyplexes (PXs)), we investigated the suitability of the well-known surfactant-based approach for Apolipoprotein E (ApoE)-functionalization of nanoparticles (NPs). The aim of this present work was to investigate if ApoE coating of siRNA PXs formed with cationic branched 25-kDa poly(ethyleneimine) (b-PEI) and nylon-3 polymers without or after precoating with polysorbate 80 (PS 80) would promote successful delivery across the BBB. We utilized highly hydrophobic NM0.2/CP0.8 nylon-3 polymers to evaluate the effects of hydrophobic cyclopentyl (CP) subunits on ApoE binding efficacy and observed successful ApoE binding with and without PS 80 precoating to the nylon-3 but not the PEI polyplexes. Accordingly, ApoE-coated nylon-3 polyplexes showed significantly increased uptake and gene silencing in U87 glioma cells but no benefit in vivo. In conclusion, further optimization of ApoE-functionalized polyplexes and more sophisticated in vitro models are required to achieve more successful in vitro-in vivo translation in future approaches.

3.
J Proteome Res ; 22(10): 3383-3391, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712406

RESUMO

We present an effective, fast, and user-friendly method to reduce codigestion of bead-bound ligands, such as antibodies or streptavidin, in affinity purification-mass spectrometry experiments. A short preincubation of beads with Sulfo-NHS-Acetate leads to chemical acetylation of lysine residues, making ligands insusceptible to Lys-C-mediated proteolysis. In contrast to similar approaches, our procedure offers the advantage of exclusively using nontoxic chemicals and employing mild chemical reaction conditions. After binding of bait proteins to Sulfo-NHS-Acetate treated beads, we employ a two-step digestion protocol with the sequential use of Lys-C protease for on-bead digestion followed by in-solution digestion of the released proteins with trypsin. The implementation of this protocol results in a strong reduction of contaminating ligand peptides, which allows significantly higher amounts of sample to be subjected to LC-MS analysis, improving sensitivity and quantitative accuracy.

4.
J Control Release ; 360: 613-629, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437848

RESUMO

The blood-brain barrier (BBB) is a highly selective biological barrier that represents a major bottleneck in the treatment of all types of central nervous system (CNS) disorders. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach, e.g., for brain tumors, by downregulating brain tumor-related genes and inhibiting tumor growth via RNA interference. In an effort to develop efficient siRNA nanocarriers for crossing the BBB, we utilized polyethyleneimine (PEI) polymers hydrophobically modified with either stearic-acid (SA) or dodecylacrylamide (DAA) subunits and evaluated their suitability for delivering siRNA across the BBB in in vitro and in vivo BBB models depending on their structure. Physicochemical characteristics of siRNA-polymer complexes (polyplexes (PXs)), e.g., particle size and surface charge, were measured by dynamic light scattering and laser Doppler anemometry, whereas siRNA condensation ability of polymers and polyplex stability was evaluated by spectrophotometric methods. The composition of the biomolecule corona that absorbs on polyplexes upon encountering physiological fluids was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. Cellular internalization abilities of PXs into brain endothelial cells (hCMEC/D3) was confirmed, and a BBB permeation assay using a human induced pluripotent stem cell (hiPSC)-derived BBB model revealed similar abilities to cross the BBB for all formulations under physiological conditions. However, biodistribution studies of radiolabeled PXs in mice were inconsistent with in vitro results as the detected amount of radiolabeled siRNA in the brain delivered with PEI PXs was higher compared to PEI-SA PXs. Taken together, PEI PXs were shown to be a suitable nanocarrier to deliver small amounts of siRNA across the BBB into the brain but more sophisticated human BBB models that better represent physiological conditions and biodistribution are required to provide highly predictive in vitro data for human CNS drug development in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Polietilenoimina , Humanos , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno , Barreira Hematoencefálica/metabolismo , Distribuição Tecidual , Células Endoteliais/metabolismo , RNA de Cadeia Dupla , Polímeros/química , Permeabilidade
5.
Int J Pharm ; 643: 123257, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482228

RESUMO

In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.


Assuntos
Técnicas de Transferência de Genes , Coroa de Proteína , Coroa de Proteína/metabolismo , DNA/química , Distribuição Tecidual , Transfecção , Polietilenoimina/química
6.
J Proteome Res ; 21(10): 2397-2411, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006919

RESUMO

Robust, efficient, and reproducible protein extraction and sample processing is a key step for bottom-up proteomics analyses. While many sample preparation protocols for mass spectrometry have been described, selecting an appropriate method remains challenging since some protein classes may require specialized solubilization, precipitation, and digestion procedures. Here, we present a comprehensive comparison of the 16 most widely used sample preparation methods, covering in-solution digests, device-based methods, and commercially available kits. We find a remarkably good performance of the majority of the protocols with high reproducibility, little method dependency, and low levels of artifact formation. However, we revealed method-dependent differences in the recovery of specific protein features, which we summarized in a descriptive guide matrix. Our work thereby provides a solid basis for the selection of MS sample preparation strategies for a given proteomics project.


Assuntos
Proteínas , Proteômica , Espectrometria de Massas/métodos , Proteínas/análise , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos
7.
PLoS Genet ; 18(8): e1010376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994477

RESUMO

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Assuntos
Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Acetilação , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Adv Ther (Weinh) ; 4(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33542947

RESUMO

The blood-brain barrier (BBB) is composed of brain endothelial cells, pericytes, and astrocytes, which build a tight cellular barrier. Therapeutic (macro)molecules are not able to transit through the BBB in their free form. This limitation is bypassed by apolipoprotein E (ApoE)-functionalized polymeric nanoparticles (NPs) that are able to transport drugs (e.g. dalargin, loperamide, doxorubicin, nerve growth factor) across the BBB via low density lipoprotein (LDL) receptor mediated transcytosis. Coating with polysorbate 80 or poloxamer 188 facilitates ApoE adsorption onto polymeric NPs enabling recognition by LDL receptors of brain endothelial cells. This effect is even enhanced when NPs are directly coated with ApoE without surfactant anchor. Similarly, covalent coupling of ApoE to NPs that bear reactive groups on their surface leads to significantly improved brain uptake while avoiding the use of surfactants. Several in vitro BBB models using brain endothelial cells or co-cultures with astrocytes/pericytes/glioma cells are described which provide first insights regarding the ability of a drug delivery system to cross this barrier. In vivo models are employed to simulate central nervous system-relevant diseases such as Alzheimer's or Parkinson's disease and cerebral cancer.

9.
Nucleic Acids Res ; 47(20): 10894-10905, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535128

RESUMO

RNA polymerase-binding RNA aptamers (RAPs) are natural RNA elements that control transcription in cis by directly contacting RNA polymerase. Many RAPs inhibit transcription by inducing Rho-dependent termination in Escherichia coli. Here, we studied the role of inhibitory RAPs (iRAPs) in modulation of antisense transcription (AT) using in silico and in vivo approaches. We revisited the antisense transcriptome in cells with impaired AT regulators (Rho, H-NS and RNaseIII) and searched for the presence of RAPs within antisense RNAs. Many of these RAPs were found at key genomic positions where they terminate AT. By exploring the activity of several RAPs both in a reporter system and in their natural genomic context, we confirmed their significant role in AT regulation. RAPs coordinate Rho activity at the antisense strand and terminate antisense transcripts. In some cases, they stimulated sense expression by alleviating ongoing transcriptional interference. Essentially, our data postulate RAPs as key determinants of Rho-mediated AT regulation in E. coli.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , RNA Antissenso/metabolismo , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
10.
Nanomaterials (Basel) ; 9(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288448

RESUMO

Glioblastoma multiforme is a devastating disease that has attracted enormous attention due to poor prognosis and high recurrence. Small interfering RNA (siRNA) in principle offers a promising therapeutic approach by the downregulation of disease-related genes via RNA interference. For efficient siRNA delivery to target sites, cationic polymers are often used in preclinical studies for the protection of siRNA and complex formation based on electrostatic interactions. In an effort to develop biocompatible and efficient nanocarriers with a translational outlook for optimal gene silencing at reduced toxicity, we synthesized two sets of nylon-3 copolymers with variable cationic content (DM or NM monomer) and hydrophobic subunits (CP monomer) and evaluated their suitability for in vitro siRNA delivery into glioblastoma cells. DM0.4/CP0.6 and NM0.4/CP0.6 polymers with similar subunit ratios were synthesized to compare the effect of different cationic subunits. Additionally, we utilized NM0.2/CP0.8 polymers to evaluate the impact of the different hydrophobic content in the polymer chain. The siRNA condensation ability and polymer-siRNA complex stability was evaluated by unmodified and modified SYBR gold assays, respectively. Further physicochemical characteristics, e.g., particle size and surface charge, were evaluated by dynamic light scattering and laser Doppler anemometry, whereas a relatively new method for polyplex size distribution analysis-tunable resistive pulse sensing-was additionally developed and compared to DLS measurements. Transfection efficiencies, the route of cell internalization, and protein knockdown abilities in glioblastoma cells were investigated by flow cytometry. Furthermore, cellular tolerability was evaluated by MTT and LDH assays. All the polymers efficiently condensed siRNA at N/P ratios of three, whereas polymers with NM cationic subunits demonstrated smaller particle size and lower polyplex stability. Furthermore, NM0.2/CP0.8 polyplexes with the highest hydrophobic content displayed significantly higher cellular internalization in comparison to more cationic formulations and successful knockdown capabilities. Detailed investigations of the cellular uptake route demonstrated that these polyplexes mainly follow clathrin-mediated endocytotic uptake mechanisms, implying high interaction capacity with cellular membranes. Taken together with conducive toxicity profiles, highly hydrophobic nylon-3 polymers provide an appropriate siRNA delivery agent for the potential treatment of glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...